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fields, and how the bound-charge current affects the “curl B”
Maxwell equation. Finally, we consider an electromagnetic wave
in a dielectric. We find that only a slight modification to the vacuum
case is needed.

10.1 Dielectrics

The capacitor we studied in Chapter 3 consisted of two conductors, insu-
lated from one another, with nothing in between. The system of two con-
ductors was characterized by a certain capacitance C, a constant relating
the magnitude of the charge Q on the capacitor (positive charge Q on
one plate, equal negative charge on the other) to the difference in electric
potential between the two conductors, ¢; — ¢>. Let’s denote the potential
difference by ¢12:

_9
b2

For the parallel-plate capacitor, two flat plates each of area A and sepa-
rated by a distance s, we found that the capacitance is given by

C (10.1)

A
c=" (10.2)
S

Capacitors like this can be found in some electrical apparatus. They are
called vacuum capacitors and consist of plates enclosed in a highly evac-
uated bottle. They are used chiefly where extremely high and rapidly
varying potentials are involved. Far more common, however, are capac-
itors in which the space between the plates is filled with some non-
conducting solid or liquid substance. Most of the capacitors you have
worked with in the laboratory are of that sort; there are dozens of them in
any television screen. For conductors embedded in a material medium,
Eq. (10.2) does not agree with experiment. Suppose we fill the space
between the two plates shown in Fig. 10.1(a) with a slab of plastic, as
in Fig. 10.1(b). Experimenting with this new capacitor, we still find a
simple proportionality between charge and potential difference, so that
we can still define a capacitance by Eq. (10.1). But we find C to be
substantially larger than Eq. (10.2) would have predicted. That is, we
find more charge on each of the plates, for the same potential difference,
plate area, and distance of separation. The plastic slab must be the cause
of this.

It is not hard to understand in a general way how this comes about.
The plastic slab consists of molecules, the molecules are composed of
atoms, which in turn are made of electrically charged particles — electrons
and atomic nuclei. The electric field between the capacitor plates acts on
those charges, pulling the negative charges up, if the upper plate is pos-
itive as in Fig. 10.2, and pushing the positive charges down. Nothing
moves very far. (There are no free electrons around, already detached

(@)
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Figure 10.1.

(a) A capacitor formed by parallel conducting
plates. (b) The same plates with a slab of
insulator in between.
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Figure 10.2.

How a dielectric increases the charge on the
plates of a capacitor. (a) Space between the
plates empty; Qg = Co¢12. (b) Space between
the plates filled with a nonconducting material,
that is, a dielectric. Electric field pulls negative
charges up and pushes positive charges down,
exposing a layer of uncompensated negative
charge on the upper surface of the dielectric
and a layer of uncompensated positive charge
on the lower surface. The total charge at the
top, including charge Q on the upper plate, is
the same as in (a). Q itself is now greater than
Qp; O = kQg. This Q is the amount of charge
that will flow through the resistor R if the
capacitor is discharged by throwing the switch.

from atoms and ready to travel, as there would be in a metallic conduc-
tor.) There will be some slight displacement of the charges nevertheless,
for an atom is not an infinitely rigid structure. The effect of this within the
plastic slab is that the negative charge distribution, viewed as a whole,
and the total positive charge distribution (the atomic nuclei) are very
slightly displaced relative to one another, as indicated in Fig. 10.2(b).
The interior of the block remains electrically neutral, but a thin layer
of uncompensated negative charge has emerged at the top, with a corre-
sponding layer of uncompensated positive charge at the bottom.

In the presence of the induced layer of negative charge below the
upper plate, the charge Q on the plate itself will increase. In fact, Q must
increase until the total charge at the top, the algebraic sum of Q and the
induced charge layer, equals Qg (the charge on the upper plate before
the plastic was inserted). We shall be able to prove this when we return
to this problem in Section 10.8 after settling some questions about the
electric field inside matter. The important point now is that the charge
Q in Fig. 10.2(b) is larger than Qg and that this Q is the charge of the
capacitor in the relation Q = Ce¢ys. It is the charge that came out of
the battery, and it is the amount of charge that would flow through the
resistor R were we to discharge the capacitor by throwing the switch in
the diagram. If we did that, the induced charge layer, which is not part of
0, would simply disappear into the slab.

According to this explanation, the ability of a particular material
to increase the capacitance ought to depend on the amount of electric
charge in its structure and the ease with which the electrons can be dis-
placed with respect to the atomic nuclei. The factor by which the capac-
itance is increased when an empty capacitor is filled with a particular
material, Q/Qo in our example, is called the dielectric constant of that
material. The symbol « is usually used for it:

— C =«C(C (10.3)

0=x0o

The material itself is often called a dielectric when we are talking about
its behavior in an electric field. But any homogeneous nonconducting
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Table 10.1.
Dielectric constants of various substances
Dielectric

Substance Conditions constant (k)
Air gas, 0°C, I atm 1.00059
Methane, CHy gas, 0°C, 1 atm 1.00088
Hydrogen chloride, HC1 gas, 0°C, I atm 1.0046
Water, H,O gas, 110°C, I atm 1.0126

liquid, 20°C 80.4
Benzene, CgHg liquid, 20°C 2.28
Methanol, CH;OH liquid, 20°C 33.6
Ammonia, NH3 liquid, —34°C 22.6
Mineral oil liquid, 20 °C 2.24
Sodium chloride, NaCl solid, 20°C 6.12
Sulfur, S solid, 20°C 4.0
Silicon, Si solid, 20°C 11.7
Polyethylene solid, 20°C 2.25-2.3
Porcelain solid, 20°C 6.0-8.0
Paraffin wax solid, 20°C 2.1-2.5
Pyrex glass 7070 solid, 20°C 4.00

substance can be so characterized. Table 10.1 lists the measured values
of the dielectric constants for a miscellaneous assortment of substances.

Every dielectric constant in the table is larger than 1. We should
expect that if our explanation is correct. The presence of a dielectric
could reduce the capacitance below that of the empty capacitor only if
its electrons moved, when the electric field was applied, in a direction
opposite to the resulting force. For oscillating electric fields, by the way,
some such behavior would not be absurd. But for the steady fields we are
considering here it can’t work that way.

The dielectric constant of a perfect vacuum is, of course, exactly 1.0
by our definition. For gases under ordinary conditions, « is only a lit-
tle larger than 1.0, simply because a gas is mostly empty space. Ordinary
solids and liquids usually have dielectric constants ranging from 2 to 6 or
so. Note, however, that liquid ammonia is an exception to this rule, and
water is a spectacular exception. Actually liquid water is slightly con-
ductive, but that, as we shall have to explain later, does not prevent our
defining and measuring its dielectric constant. The ionic conductivity of
the liquid is not the reason for the gigantic dielectric constant of water.
You can discern this extraordinary property of water in the dielectric con-
stant of the vapor if you remember that it is really the difference between
k and 1 that reveals the electrical influence of the material. Compare the
values of x given in the table for water vapor and for air.

Once the dielectric constant of a particular material has been deter-
mined, perhaps by measuring the capacitance of one capacitor filled with
it, we are able to predict the behavior, not merely of two-plate capacitors,
but of any electrostatic system made up of conductors and pieces of that
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dielectric of any shape. That is, we can predict all electric fields that will
exist in the vacuum outside the dielectrics for given charges or potentials
on the conductors in the system.

The theory that enables us to do this was fully worked out by the
physicists of the nineteenth century. Lacking a complete picture of the
atomic structure of matter, they were more or less obliged to adopt a
macroscopic description. From that point of view, the interior of a dielec-
tric is a featureless expanse of perfectly smooth “mathematical jelly”
whose single electrical property distinguishing it from a vacuum is a
dielectric constant different from unity.

If we develop only a macroscopic description of matter in an elec-
tric field, we shall find it hard to answer some rather obvious-sounding
questions — or, rather, hard to ask these questions in such a way that they
can be meaningfully answered. For instance, what is the strength of the
electric field inside the plastic slab of Fig. 10.1(b) when there are certain
charges on the plates? Electric field strength is defined by the force on a
test charge. How can we put a test charge inside a perfectly dense solid,
without disturbing anything, and measure the force on it? What would
that force mean if we did measure it? You might think of boring a hole
and putting the test charge in the hole with some room to move around,
so that you can measure the force on it as on a free particle. But then you
will be measuring not the electric field in the dielectric, but the electric
field in a cavity in the dielectric, which is quite a different thing.

Fortunately another line of attack is available to us, one that leads
up from the microscopic or atomic level. We know that matter is made of
atoms and molecules; these in turn are composed of elementary charged
particles. We know something about the size and structure of these atoms,
and we know something about their arrangement in crystals and flu-
ids and gases. Instead of describing our dielectric slab as a volume of
structureless but nonvacuous jelly, we shall describe it as a collection
of molecules inhabiting a vacuum. If we can find out what the elec-
tric charges in one molecule do when that molecule is all by itself in
an electric field, we should be able to understand the behavior of two
such molecules a certain distance apart in a vacuum. It will only be nec-
essary to include the influence, on each molecule, of any electric field
arising from the other. This is a vacuum problem. Now all we have to do
is extend this to a population of, say, 10?2 molecules occupying a cubic
centimeter or so of vacuum, and we have our real dielectric. We hope to
do this without generating 10?° separate problems.

This program, if carried through, will reward us in two ways. We
shall be able at last to say something meaningful about the electric and
magnetic fields inside matter, answering questions such as the one raised
above. What is more valuable, we shall understand how the macroscopic
electric and magnetic phenomena in matter arise from, and therefore
reveal, the nature of the underlying atomic structure. We are going to
study electric and magnetic effects separately. We begin with dielectrics.
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Since our first goal is to describe the electric field produced by an atom
or molecule, it will help to make some general observations about the
electrostatic field external to any small system of charges.

10.2 The moments of a charge distribution

An atom or molecule consists of some electric charges occupying a small
volume, perhaps a few cubic angstroms (10739 m3) of space. We are
interested in the electric field outside that volume, which arises from
this rather complicated charge distribution. We shall be particularly con-
cerned with the field far away from the source, by which we mean far
away compared with the size of the source itself. What features of the
charge structure mainly determine the field at remote points? To answer
this, let’s look at some arbitrary distribution of charges and see how we
might go about computing the field at a point outside it. The discussion
in this and the following section generalizes our earlier discussion of
dipoles in Section 2.7.

Figure 10.3 shows a charge distribution of some sort located in the
neighborhood of the origin of coordinates. It might be a molecule con-
sisting of several positive nuclei and quite a large number of electrons. In
any case we shall suppose it is described by a given charge density func-
tion p(x,y,z); p is negative where the electrons are and positive where
the nuclei are. To find the electric field at distant points we can begin by
computing the potential of the charge distribution. To illustrate, let’s take
some point A out on the z axis. (Since we are not assuming any special
symmetry in the charge distribution, there is nothing special about the z
axis.) Let r be the distance of A from the origin. The electric potential at
A, denoted by ¢4, is obtained as usual by adding the contributions from
all elements of the charge distribution:

1 / p(x.y.2)dv

1= dreg R

(10.4)

In the integrand, dv' is an element of volume within the charge distribu-
tion, p(x',y,7) is the charge density there, and R in the denominator is
the distance from A to this particular charge element. The integration is
carried out in the coordinates x’, y', 7/, of course, and is extended over all
the region containing charge. We can express R in terms of r and the dis-
tance r’ from the origin to the charge element. Using the law of cosines
with 6 the angle between r’ and the axis on which A lies, we have

R= (> +r?—2r' cos0)'/?. (10.5)

With this substitution for R, the integral becomes

Qs =

a 4 e

/ pdV' (P + r? = 2rr cos0) /2. (10.6)

Figure 10.3.
Calculation of the potential, at a point A, of a
molecular charge distribution.



10.5 Atomic and molecular dipoles

479

10.5 Atomic and molecular dipoles; induced
dipole moments

Consider the simplest atom, the hydrogen atom, which consists of a
nucleus and one electron. If you imagine the negatively charged elec-
tron revolving around the positive nucleus like a planet around the sun —
as in the original atomic model of Niels Bohr — you will conclude that
the atom has, at any one instant of time, an electric dipole moment. The
dipole moment vector p points parallel to the electron—proton radius vec-
tor, and its magnitude is e times the electron—proton distance. The direc-
tion of this vector will be continually changing as the electron, in this
picture of the atom, circles around its orbit. To be sure, the time average
of p will be zero for a circular orbit, but we should expect the periodi-
cally changing dipole moment components to generate rapidly oscillating
electric fields and electromagnetic radiation.

The absence of such radiation in the normal hydrogen atom was
one of the baffling paradoxes of early quantum physics. Modern quan-
tum mechanics tells us that it is better to think of the hydrogen atom
in its lowest energy state (the usual condition of most of the hydrogen
atoms in the universe) as a spherically symmetrical structure with the
electronic charge distributed, in the time average, over a cloud surround-
ing the nucleus. Nothing is revolving in a circle or oscillating. If we could
take a snapshot with an exposure time shorter than 107105, we might
discern an electron localized some distance away from the nucleus. But
for processes involving times much longer than that, we have, in effect,
a smooth distribution of negative charge surrounding the nucleus and
extending out in all directions with steadily decreasing density. The total
charge in this distribution is just —e, the charge of one electron. Roughly
half of it lies within a sphere of radius 0.5 angstrom (0.5 - 1079 m). The
density decreases exponentially outward; a sphere only 2.2 angstroms in
radius contains 99 percent of the charge. The electric field in the atom is
just what a stationary charge distribution of this form, together with the
positive nucleus, would produce.

A similar picture is the best one to adopt for other atoms and
molecules. We can treat the nuclei in molecules as point charges; for
our present purposes their size is too small to matter. The entire elec-
tronic structure of the molecule is to be pictured as a single cloud of
negative charge of smoothly varying density. The shape of this cloud,
and the variation of charge density within it, will of course be different
for different molecules. But at the fringes of the cloud the density will
always fall off exponentially, so that it makes some sense to talk of the
size and shape of the molecular charge distribution.

Quantum mechanics makes a crucial distinction between stationary
states and time-dependent states of an atom. The state of lowest energy
is a time-independent structure, a stationary state. It has to be, accord-
ing to the laws of quantum mechanics. It is that state of the atom or

Figure 10.9.

The force on a dipole in a nonuniform field.

(a) The net force on the dipole in this position is
radially outward. (b) The net force on the dipole
in this position is upward.
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Figure 10.10.

The time-average distribution in the normal
hydrogen atom. Shading represents density of
electronic (negative) charge.

+ + + + + 4+ + + +

Figure 10.11.

In an electric field, the negative charge is pulled
one way and the positive nucleus is pulled the
other way. The distortion is grossly exaggerated
in this picture. To distort the atom that much
would require a field of 1010 volts/m.

molecule that concerns us here. Of course, atoms can radiate electro-
magnetic energy. That happens with the atom in a nonstationary state in
which there is an oscillating electric charge.

Figure 10.10 represents the charge distribution in the normal hydro-
gen atom. It is a cross section through the spherically symmetrical cloud,
with the density suggested by shading. Obviously the dipole moment of
such a distribution is zero. The same is true of any atom in its state of
lowest energy, no matter how many electrons it contains, for in all such
states the electron distribution has spherical symmetry. It is also true of
any ionized atom, though an ion of course has a monopole moment, that
is, a net charge.

So far we have found nothing very interesting. But now let us put
the hydrogen atom in an electric field supplied by some external source,
as in Fig. 10.11. The electric field distorts the atom, pulling the negative
charge down and pushing the positive nucleus up. The distorted atom
will have an electric dipole moment because the “center of gravity” of
the negative charge will no longer coincide with the positive nucleus,
but will be displaced from the nucleus by some small distance Az. The
electric dipole moment of the atom is now e Az.

How much distortion will be caused by a field of given strength E?
Remember that electric fields already exist in the unperturbed atom, of
strength e/4mega® in order of magnitude, where a is a typical atomic
dimension. We should expect the relative distortion of the atom’s struc-
ture, measured by the ratio Az/a, to have the same order of magnitude as
the ratio of the perturbing field E to the internal fields that hold the atom
together. We predict, in other words, that

AZ,\, E

N — 10.27
a  e/dmepa’ ( )

If you don’t trust this reasoning, Exercise 10.30 gives an alternative
method for finding the relation between Az and E.

Now « is a length of order 1071 m, and e/4m ega? is approximately
10! volts/m, a field thousands of times more intense than any large-scale
steady field we could make in the laboratory. Evidently the distortion
of the atom is going to be very slight indeed, in any practical case. If
Eq. (10.27) is correct, it follows that the dipole moment p of the distorted
atom, which is just e Az, will be

p=elAz~ 4dweya’E. (10.28)

Since the atom was spherically symmetrical before the field E was
applied, the dipole moment vector p will be in the direction of E. The
factor that relates p to E is called the atomic polarizability, and is usually
denoted by «:

p=aE (10.29)
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Table 10.2.

Atomic polarizabilities («/4eg), in units of 10730 m3

Element H He Li Be C Ne Na Ar K
a/dmeg 0.66 0.21 12 9.3 1.5 04 27 1.6 34

It is common to work instead with the quantity /4 €p, which has
the dimensions of volume. The reason for this is that a direct compari-
son between p and E isn’t quite a fair one, because electric fields con-
tain a somewhat arbitrary factor of 1/4mwep multiplying the factors of
charge and distance in Coulomb’s law. A more reasonable comparison
would therefore involve p and 4 €gE. These quantities have dimensions
of (charge) x (distance) and (charge)/ (distance)?, respectively. Equation
(10.29) then yields p/(4mwegE) = «/4mep. This quantity is often also
called the atomic polarizability, so the term is a little ambiguous. It is
best to say explicitly whether you are working with « or o /4 €.

According to our estimate in Eq. (10.28), we have o ~ 4 epa’, so
o /4meq is in order of magnitude an atomic volume, something like a® ~
10739 m3. Its value for a particular atom will depend on the details of the
atom’s electronic structure. An exact quantum-mechanical calculation
of the polarizability of the hydrogen atom predicts «o/4mweg = (9/ 2)a(3),
where aq is the Bohr radius, 0.52 - 10~ 19 m, the characteristic distance in
the H-atom structure in its normal state. The values of « /47 €( for several
species of atoms, experimentally determined, are given in Table 10.2.
The examples given are arranged in order of increasing number of elec-
trons. Note the wide variations in « /4 €¢. If you are acquainted with the
periodic table of the elements, you may discern something systematic
here. Hydrogen and the alkali metals lithium, sodium, and potassium,
which occupy the first column of the periodic table, have large values
of a/4meq, and these increase steadily with increasing atomic number,
from hydrogen to potassium. The noble gases have much smaller atomic
polarizabilities, but these also increase as we proceed, within the family,
from helium to neon to krypton. Apparently the alkali atoms, as a class,
are easily deformed by an electric field, whereas the electronic struc-
ture of a noble gas atom is much stiffer. It is the loosely bound outer, or
“valence,” electron in the alkali atom structure that is responsible for the
easy polarizability.

A molecule, too, develops an induced dipole moment when an elec-
tric field is applied to it. The methane molecule depicted in Fig. 10.12 is
made from four hydrogen atoms arranged at the corners of a tetrahedron
around the central carbon atom. This object has an electrical polarizabil-
ity, determined experimentally, of

=2.6-10730m3. (10.30)
dreg

CH,

Y 6% 1030 m?
471'60

Figure 10.12.
The methane molecule, made of four hydrogen
atoms and a carbon atom.
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Figure 10.13.

A molecule with no symmetry whatsoever,
bromochloroflouromethane. This is methane
with three different halogens substituted for
three of the hydrogens. The bond lengths and
the tetrahedron edges are all a bit different.

It is interesting to compare this with the sum of the polarizabilities of
a carbon atom and four isolated hydrogen atoms. Taking the data from
Table 10.2, we find ac/4meq + 4ay/4mey = 4.1-10739 m3. Evidently
the binding of the atoms into a molecule has somewhat altered the elec-
tronic structure. Measurements of atomic and molecular polarizabilities
have long been used by chemists as clues to molecular structure.

10.6 Permanent dipole moments

Some molecules are so constructed that they have electric dipole moments
even in the absence of an electric field. They are unsymmetrical in their
normal state. The molecule shown in Fig. 10.13 is an example. A simpler
example is provided by any diatomic molecule made out of dissimilar
atoms, such as hydrogen chloride, HCI. There is no point on the axis of
this molecule about which the molecule is symmetrical fore and aft; the
two ends of the molecule are physically different. It would be a pure acci-
dent if the center of gravity of the positive charge and that of the negative
charge happened to fall at the same point along the axis. When the HCI
molecule is formed from the originally spherical H and CI atoms, the
electron of the H atom shifts partially over to the Cl structure, leaving the
hydrogen nucleus partially denuded. So there is some excess of positive
charge at the hydrogen end of the molecule and a corresponding excess
of negative charge at the chlorine end. The magnitude of the resulting
electric dipole moment, p = 3.4 - 10730 coulomb-meter, is equivalent to
shifting one electron about 0.2 angstrom (using s = p/e).

By contrast, the hydrogen atom in a field of 1 megavolt per meter,
with the polarizability listed in Table 10.2, acquires an induced moment
less than 1073* coulomb-meter. Permanent dipole moments, when they
exist, are as a rule enormously larger than any moment that can be induced
by ordinary laboratory electric fields.” Because of this, the distinction
between polar molecules, as molecules with “built-in” dipole moments
are called, and nonpolar molecules is very sharp.

We said at the beginning of Section 10.5 that the hydrogen atom
had, at any instant of time, a dipole moment. But then we dismissed it as
being zero in the time average, on account of the rapid motion of the elec-
tron. Now we seem to be talking about molecular dipole moments as if
a molecule were an ordinary stationary object like a baseball bat whose
ends could be examined at leisure to see which was larger! Molecules
move more slowly than electrons, but their motion is rapid by ordinary
standards. Why can we credit them with “permanent” electric dipole
moments? If this inconsistency was bothering you, you are to be com-
mended. The full answer can’t be given without some quantum

2 Thereis a good reason for this. The internal electric fields in atoms and molecules, as
we remarked in Section 10.5, are naturally on the order of e/47 60(10_10 m)2, which is

roughly 10! volts/m! We cannot apply such a field to matter in the laboratory for the
closely related reason that it would tear the matter to bits.
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mechanics, but the difference essentially involves the time scale of the
motion. The time it takes a molecule to interact with its surroundings
is generally shorter than the time it takes the intrinsic motion of the
molecule to average out the dipole moment smoothly. Hence the molecule
really acts as if it had the moment we have been talking about. A very
short time qualifies as permanent in the world of one molecule and its
neighbors.

Some common polar molecules are shown in Fig. 10.14, with the
direction and magnitude of the permanent dipole moment indicated for
each. The water molecule has an electric dipole moment because it is
bent in the middle, the O—H axes making an angle of about 105° with
one another. This is a structural oddity with the most far-reaching con-
sequences. The dipole moment of the molecule is largely responsible for
the properties of water as a solvent, and it plays a decisive role in chem-
istry that goes on in an aqueous environment. It is hard to imagine what
the world would be like if the HyO molecule, like the CO, molecule,
had its parts arranged in a straight line; probably we wouldn’t be here
to observe it. We hasten to add that the shape of the H,O molecule
is not a capricious whim of Nature. Quantum mechanics has revealed
clearly why a molecule made of an eight-electron atom joined to two
one-electron atoms must prefer to be bent.

The behavior of a polar substance as a dielectric is strikingly differ-
ent from that of material composed of nonpolar molecules. The dielectric
constant of water is about 80, that of methyl alcohol 33, while a typi-
cal nonpolar liquid might have a dielectric constant around 2. In a non-
polar substance the application of an electric field induces a slight dipole
moment in each molecule. In the polar substance dipoles are already
present in great strength but, in the absence of a field, are pointing in
random directions so that they have no large-scale effect. An applied
electric field merely aligns them to a certain degree. In either process,
however, the macroscopic effects will be determined by the net amount
of polarization per unit volume.

10.7 The electric field caused by polarized matter
10.7.1 The field outside matter

Suppose we build up a block of matter by assembling a very large num-
ber of molecules in a previously empty region of space. Suppose too
that each of these molecules is polarized in the same direction. For the
present we need not concern ourselves with the nature of the molecules
or with the means by which their polarization is maintained. We are

Figure 10.14.
Some well-known polar molecules. The observed value of the
permanent dipole moment p is given in units of 1073° coulomb-meters.

Hydrogen chloride

Carbon monoxide

Water

Methanol
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Figure 10.15.

A column of polarized material (a) produces the
same field, at an external point A, as two
charges, one at each end of the column (b).

interested only in the electric field they produce when they are in this
condition; later we can introduce any fields from other sources that might
be around. If you like, you can imagine that these are molecules with
permanent dipole moments that have been lined up neatly, all pointing
the same way, and frozen in position. All we need to specify is N, the
number of dipoles per cubic meter, and the moment of each dipole p. We
shall assume that N is so large that any macroscopically small volume
dv contains quite a large number of dipoles. The total dipole strength in
such a volume is pN dv. At any point far away from this volume element
compared with its size, the electric field from these particular dipoles
would be practically the same if they were replaced by a single dipole
moment of strength pN dv. We shall call pN the density of polarization,
and denote it by P, a vector quantity with the units C-m/m> (or C/m?):
dipole moment

P=pN=—~—"——. (10.31)
volume

P dv is the dipole moment to be associated with any small-volume ele-
ment dv for the purpose of computing the electric field at a distance. By
the way, our matter has been assembled from neutral molecules only;
there is no net charge in the system or on any molecule, so we have only
the dipole moments to consider as sources of a distant field.

Figure 10.15 shows a slender column, or cylinder, of this polarized
material. Its cross section is da, and it extends vertically from z; to 2.
The polarization density P within the column is uniform over the length
and points in the positive z direction. We are about to calculate the elec-
tric potential, at some external point, due to this column of polariza-
tion. An element of the cylinder, of height dz, has a dipole moment
Pdv = Pdadz. Its contribution to the potential at the point A can be
written down by referring back to our formula Eq. (10.15) for the poten-
tial of a dipole, that is,

Pdadzcos0

d =
2 4 egr?

(10.32)

The potential due to the entire column is

B Pda /Zz dzcosf
T drwe 2

®a (10.33)

<1

This is simpler than it looks: dz cos 8 is just —dr, so that the integrand is
a perfect differential, d(1/r). The result of the integration is then

oy = Lda (l - l) (10.34)

o 47‘[60 rn rl

Equation (10.34) is precisely the same as the expression for the
potential at A that would be produced by two point charges, a positive
charge of magnitude P da sitting on top of the column at a distance r
from A, and a negative charge of the same magnitude at the bottom of
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the column. The source consisting of a column of uniformly polarized
matter is equivalent, at least so far as its field at all external points is con-
cerned, to two concentrated charges. Note that nowhere have we assumed
that A is far away from the column, that is, that r; and r, are much larger
than the height of the column, zo — zj. All that is required is that the
distance from A to any point in the column is much larger than the size
of the dipoles (assumed to be very small) and also much larger than the
width of the column (also assumed to be small), for then Eq. (10.32)
will be valid.

We can prove Eq. (10.34) in another way without any mathematics.
Consider a small section of the column of height dz, containing a dipole
moment Pdadz. Let us make an imitation or substitute for this by tak-
ing an unpolarized insulator of the same size and shape and sticking a
charge Pda on top of it and a charge —P da on the bottom. This little
block now has the same dipole moment as that bit of our original col-
umn, and therefore it will make an identical contribution to the field at
any remote point A. (The field inside our substitute, or very close to it,
may be different from the field of the original — we don’t care about that.)
Now make a whole set of such blocks and stack them up to imitate the
polarized column; see Fig. 10.15(b). They must give the same field at
A as the whole column does, for each block gave the same contribution
as its counterpart in the original. Now see what we have! At every joint
the positive charge on the top of one block coincides with the negative
charge on the bottom of the block above it, making the charge equal zero.
The only charges left uncompensated are the negative charge —P da on
the bottom of the bottom block and the positive charge P da on the top
of the top block. Seen from a distant point such as A (“distant” compared
with the size of a block, not necessarily the whole column), these look
like point charges. We conclude, as before, that two such charges pro-
duce at A exactly the same field as does our whole column of polarized
material.

With no further calculation we can extend this to a slab, or right
cylinder, of any proportions uniformly polarized in a direction perpen-
dicular to its parallel faces; see Fig. 10.16(a). The slab can simply be sub-
divided into a bundle of columns, and the potential outside will be the
sum of the contributions of the columns, each of which can be replaced

Figure 10.16.

A block of polarized material (a) is equivalent to
two sheets of charge (b), as far as the field
outside is concerned.



Electric fields in matter

486
(a) _ -~
e Al
] (‘\ ‘P i
| S 1
N & !
Se—--- ~._ B!
-~
(b)
o=P A’
+ + SR L e  y w
*E:cr/e0 1
_______ U A B
o=-P B’
Figure 10.17.

(a) The line integral of E from A to B must be the
same over all paths, internal or external,
because the internal microscopic or atomic
electric fields also are conservative (curl E = 0).
The equivalent charge sheets (b) have the same
external field.

by a charge at either end. The charges on the top, P da on each column
end of area da, make up a uniform sheet of surface charge of density

o=P (in coulomb/meter?). (10.35)

We conclude that the potential everywhere outside a uniformly polarized
slab or cylinder (not necessarily far away) is precisely what would result
from two sheets of surface charge located where the top and bottom sur-
faces of the slab were located, carrying the constant surface charge den-
sity 0 = P and 0 = —P, respectively; see Fig. 10.16(b).

We are not quite ready to say anything about the field inside the
slab. However, we do know the potential at all points on the surface of
the slab — top, bottom, or sides. Any two such points, A and B, can be
connected by a path running entirely through the external field, so that
the line integral [ E - ds is entirely determined by the external field. It
must be the same as the integral along the path A’B" in Fig. 10.16(b).
A point literally on the surface of the dielectric might be within range
of the intense molecular fields, the near field of the molecule that we
have left out of our account. Let’s agree to define the boundary of the
dielectric as a surface far enough out from the outermost atomic nucleus
— 10 or 20 angstroms would be margin enough — so that at any point
outside this boundary, the near fields of the individual atoms make a
negligible contribution to the whole line integral from A to B.

With this in mind, let’s look at a rather thin, wide plate of polar-
ized material, of thickness #, shown in cross section in Fig. 10.17(a).
Figure 10.17(b) shows, likewise in cross section, the equivalent sheets of
charge. For the system of two charge sheets, we know the field, of course,
in the space both outside and between the sheets. The field strength
inside, well away from the edges, must be just o /€, pointing down, and
the potential difference between points A" and B’ is therefore o¢/€(. The
same potential difference must exist between corresponding points A and
B on our polarized slab, because the entire external field is the same in
the two systems.

10.7.2 The field inside matter

We can now address the field inside polarized matter. Is the internal field
the same in the two systems in Fig. 10.17? Certainly not, because the slab
is full of positive nuclei and electrons, with fields on the order of 1011
volts per meter pointing in one direction here, another direction there.
But one thing is the same: the line integral of the field, reckoned over
any internal path from A to B, must be just ¢p — ¢4, which, as we have
seen, is the same as ¢p — ¢4/, which is equal to ot/€g, or Pt/€y. This
must be so because the introduction of atomic charges, no matter what
their distribution, cannot destroy the conservative property of the electric
field, expressed in the statement that [ E - ds is independent of path, or
curl E = 0.
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We know that in Fig. 10.17(b) the potential difference between the
top and bottom sheets is nearly constant, except near the edges, because
the interior electric field is practically uniform. Therefore in the central
area of our polarized plate the potential difference between top and bot-
tom must likewise be constant. In this region the line integral f f E .- ds
taken from any point A on top of the slab to any point B on the bottom,
by any path, must always yield the same value Pt/€g. Figure 10.18 is a
“magnified view” of the central region of the slab, in which the polar-
ized molecules have been made to look something like HyO molecules
all pointing the same way. We have not attempted to depict the very
intense fields that exist between and inside the molecules. (The field
ten angstroms away from a water molecule is on the order of a hundred
megavolts per meter, as you can discover from Fig. 10.14 and Eq. (10.18).)
You must imagine some rather complicated field configurations in the
neighborhood of each molecule. Now, the E in f E - ds represents the
total electric field at a given point in space, inside or outside a molecule;
it includes these complicated and intense fields just mentioned. We have
reached the remarkable conclusion that any path through this welter of
charges and fields, whether it dodges molecules or penetrates them, must
yield the same value for the path integral, namely the value we find in
the system of Fig. 10.17(b), where the field is quite uniform and has the
strength P/e€.

This tells us that the spatial average of the electric field within our
polarized slab must be —P/€p. By the spatial average of a field E over
some volume V, which we might denote by (E)/, we mean precisely this:

(E)y = l/ Edv. (10.36)
Vv

One way to sample impartially the field in many equal volumes dv
into which V might be divided would be to measure the field along each
line in a bundle of closely spaced parallel lines. We have just seen that
the line integral of E along any or all such paths is the same as if we were
in a constant electric field of strength —P/ep. That is the justification for
the conclusion that, within the polarized dielectric slab of Figs. 10.17 and

Figure 10.18.
Over any path from A to B, the line integral of
the actual microscopic field is the same.
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10.18, the spatial average of the field due to all the charges that belong to
the dielectric is

(E) = —— (10.37)

This average field is a macroscopic quantity. The volume over which
we take the average should be large enough to include very many
molecules, otherwise the average will fluctuate from one such volume to
the adjoining one. The average field (E) defined by Eq. (10.36) is really
the only kind of macroscopic electric field in the interior of a dielectric
that we can talk about. It provides the only satisfactory answer, in the
context of a macroscopic description of matter, to the question, What is
the electric field inside a dielectric material?

We may call the E in the integrand on the right, in Eq. (10.36), the
microscopic field. If we imagine that we could measure the field values
we need for the path integral, we will be measuring electric fields in vac-
uum, in the presence, of course, of electric charge. We will need very
tiny instruments, for we may be called on to measure the field at a par-
ticular point just inside one end of a certain molecule. Have we any right
to talk in this way about taking the line integral of E along some path
that skirts the southwest corner of a particular molecule and then tunnels
through its neighbor? Yes. The justification is the massive evidence that
the laws of electromagnetism work down to a scale of distances much
smaller than atomic size. We can even describe an experiment that would
serve to measure the average of the microscopic electric field along a
path defined well within the limits of atomic dimensions. All we have to
do is shoot an energetic charged particle, an alpha particle for example,
through the material. From the net change in its momentum, the average
electric field that acted on it, over its whole path, could be inferred.

Let us review the properties of the average, or macroscopic, field (E)
defined by Eq. (10.36). Its line integral | f (E)-ds between any two points
A and B that are reasonably far apart is independent of the path. It follows
that curl (E) = 0 and that (E) is the negative gradient of a potential (¢).
This potential function (¢) is itself a smoothed-out average, in the sense
of Eq. (10.36), of the microscopic potential ¢. (The latter rises to several
million volts in the interior of every atomic nucleus!) The surface inte-
gral of (E), [ (E) - da, over any surface that encloses a reasonably large
volume, is equal to 1/¢( times the charge within that volume.® That is to
say, (E) obeys Gauss’s law, a statement we can also make in differential

3 We state this without proof, postponing consideration of the relation of the surface
integral of an average field to the average of surface integrals of the microscopic field
to Chapter 11, where the question arises in Section 11.8 in connection with the
magnetic field inside matter. (See Fig. 11.18.)
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form: div (E) = (p)/€o, with the understanding that (p) too is a local
average over a suitably macroscopic volume. In short, the spatial aver-
age quantities (E), (¢), and (p) are related to one another in the same
way as are the microscopic electric field, potential, and charge density in
vacuum.

From now on, when we speak of the electric field E inside any piece
of matter much larger than a molecule, we will mean an average, or
macroscopic, field as defined by Eq. (10.36), even when the brackets ( )
are omitted.

10.8 Another look at the capacitor

At the beginning of this chapter we explained in a qualitative way how
the presence of a dielectric between the plates of a capacitor increases its
capacitance. Now we are ready to analyze quantitatively the dielectric-
filled capacitor. What we have just learned about the electric field inside
matter is the key to the problem. We identified as the macroscopic field
E, the spatial average of the microscopic field. The line integral of that
macroscopic E between any two points A and B is path-independent and
equal to the potential difference. Looking back at Fig. 10.2(a) we observe
that the field E in the empty capacitor must have had the value ¢12/s. But
the potential difference between the plates, ¢, which was established
by the battery, was exactly the same in the dielectric-filled capacitor in
Fig. 10.2(b). Hence the field E in the dielectric, understood now as the
macroscopic field, must have had the same value too, for it extends and is
uniform over the same distance s. (The layers in the diagram are actually
negligible in thickness compared with s.)

The fact that the E fields are the same implies that the total charge
on and near the top plate in the dielectric-filled capacitor must be the
same as it was in the empty capacitor, namely Qp. To prove that, we
need only invoke Gauss’s law for a suitable imaginary box enclosing the
charge layers, as indicated in Fig. 10.19. Now, the charge is made up
of two parts, the charge on the plate Q (which will flow off when the
capacitor is discharged) and Q’, the charge that belongs to the dielectric.
The charge on the plate is given by Q = xQp. That was our definition
of k. Therefore, if Q+ Q' = Qyp as we have just concluded, we must have

Q' =00—0=00(—x). (10.38)

We can think of this system as the superposition of a vacuum capac-
itor and a polarized dielectric slab, Fig. 10.19(b) and (c). In the vacuum
capacitor with charge xQp, the electric field E” would be « times the
field E. In the isolated polarized dielectric slab the field E' is —P/eq, as
stated in Eq. (10.37). The superposition of these two objects creates the
actual field E. That is,

E—E' / P
—E'+E =«E— —, (10.39)
€0
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Electric Fields in Matter

4.1 B POLARIZATION

4.1.1 W Dielectrics

In this chapter, we shall study electric fields in matter. Matter, of course, comes
in many varieties—solids, liquids, gases, metals, woods, glasses—and these sub-
stances do not all respond in the same way to electrostatic fields. Nevertheless,
most everyday objects belong (at least, in good approximation) to one of two large
classes: conductors and insulators (or dielectrics). We have already talked about
conductors; these are substances that contain an “unlimited” supply of charges
that are free to move about through the material. In practice, what this ordinarily
means is that many of the electrons (one or two per atom, in a typical metal) are
not associated with any particular nucleus, but roam around at will. In dielectrics,
by contrast, all charges are attached to specific atoms or molecules—they’re on
a tight leash, and all they can do is move a bit within the atom or molecule. Such
microscopic displacements are not as dramatic as the wholesale rearrangement
of charge in a conductor, but their cumulative effects account for the characteris-
tic behavior of dielectric materials. There are actually two principal mechanisms
by which electric fields can distort the charge distribution of a dielectric atom
or molecule: stretching and rotating. In the next two sections I'll discuss these
processes.

4.1.2 @ Induced Dipoles

What happens to a neutral atom when it is placed in an electric field E? Your
first guess might well be: “Absolutely nothing—since the atom is not charged, the
field has no effect on it.” But that is incorrect. Although the atom as a whole is
electrically neutral, there is a positively charged core (the nucleus) and a nega-
tively charged electron cloud surrounding it. These two regions of charge within
the atom are influenced by the field: the nucleus is pushed in the direction of the
field, and the electrons the opposite way. In principle, if the field is large enough,
it can pull the atom apart completely, “ionizing” it (the substance then becomes
a conductor). With less extreme fields, however, an equilibrium is soon estab-
lished, for if the center of the electron cloud does not coincide with the nucleus,
these positive and negative charges attract one another, and that holds the atom
together. The two opposing forces—E pulling the electrons and nucleus apart,
their mutual attraction drawing them back together—reach a balance, leaving the

167
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H He Li Be C Ne Na Ar K Cs
0.667 0205 243 560 1.67 039 241 1.64 434 594

TABLE 4.1 Atomic Polarizabilities (o/47 €, in units of 107° m®). Data from: Hand-
book of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press, 2010).

atom polarized, with plus charge shifted slightly one way, and minus the other.
The atom now has a tiny dipole moment p, which points in the same direction
as E. Typically, this induced dipole moment is approximately proportional to the
field (as long as the latter is not too strong):

p =K. 4.1
The constant of proportionality « is called atomic polarizability. Its value
depends on the detailed structure of the atom in question. Table 4.1 lists some
experimentally determined atomic polarizabilities.

Example 4.1. A primitive model for an atom consists of a point nucleus (+¢)
surrounded by a uniformly charged spherical cloud (—¢) of radius a (Fig. 4.1).
Calculate the atomic polarizability of such an atom.

/ d
+q

—>0
—q / +q
—_—
—q E
FIGURE 4.1 FIGURE 4.2

Solution
In the presence of an external field E, the nucleus will be shifted slightly to the
right and the electron cloud to the left, as shown in Fig. 4.2. (Because the actual
displacements involved are extremely small, as you’ll see in Prob. 4.1, it is rea-
sonable to assume that the electron cloud retains its spherical shape.) Say that
equilibrium occurs when the nucleus is displaced a distance d from the center of
the sphere. At that point, the external field pushing the nucleus to the right exactly
balances the internal field pulling it to the left: £ = E,, where E, is the field pro-
duced by the electron cloud. Now the field at a distance d from the center of a
uniformly charged sphere is
1 qd

T dmey ad

(Prob. 2.12). At equilibrium, then,
1 qd

E=———, or p=gqd= (4mega’)E.
4req a’
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The atomic polarizability is therefore
o = 4mwepa’ = 3epu, 4.2)

where v is the volume of the atom. Although this atomic model is extremely crude,
the result (Eq. 4.2) is not too bad—it’s accurate to within a factor of four or so for
many simple atoms.

For molecules the situation is not quite so simple, because frequently they
polarize more readily in some directions than in others. Carbon dioxide (Fig. 4.3),
for instance, has a polarizability of 4.5 x 107*° C%m/N when you apply the field
along the axis of the molecule, but only 2 x 107 for fields perpendicular to
this direction. When the field is at some angle to the axis, you must resolve it
into parallel and perpendicular components, and multiply each by the pertinent
polarizability:

p=o B +oE.
In this case, the induced dipole moment may not even be in the same direction
as E. And CO; is relatively simple, as molecules go, since the atoms at least

arrange themselves in a straight line; for a completely asymmetrical molecule,
Eq. 4.1 is replaced by the most general linear relation between E and p:

Px = By + OlxyEy + aszz
Py =y Ey + ayy Ey + ay. E- 43)
p: = E + OlzyEy + o E,

FIGURE 4.3

The set of nine constants «;; constitute the polarizability tensor for the molecule.
Their values depend on the orientation of the axes you use, though it is always
possible to choose “principal” axes such that all the off-diagonal terms (cxy, 0.y,
etc.) vanish, leaving just three nonzero polarizabilities: &, oy, and o.

Problem 4.1 A hydrogen atom (with the Bohr radius of half an angstrom) is situated
between two metal plates 1 mm apart, which are connected to opposite terminals of
a 500 V battery. What fraction of the atomic radius does the separation distance d
amount to, roughly? Estimate the voltage you would need with this apparatus to
ionize the atom. [Use the value of « in Table 4.1. Moral: The displacements we’re
talking about are minute, even on an atomic scale.]
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Problem 4.2 According to quantum mechanics, the electron cloud for a hydrogen
atom in the ground state has a charge density

q —2r/a
p(r) = —ze N,
Ta:

where ¢ is the charge of the electron and a is the Bohr radius. Find the atomic
polarizability of such an atom. [Hint: First calculate the electric field of the electron
cloud, E,(r); then expand the exponential, assuming r < a.!

Problem 4.3 According to Eq. 4.1, the induced dipole moment of an atom is pro-
portional to the external field. This is a “rule of thumb,” not a fundamental law,
and it is easy to concoct exceptions—in theory. Suppose, for example, the charge
density of the electron cloud were proportional to the distance from the center, out
to a radius R. To what power of E would p be proportional in that case? Find the
condition on p(r) such that Eq. 4.1 will hold in the weak-field limit.

Problem 4.4 A point charge ¢ is situated a large distance r from a neutral atom of
polarizability «. Find the force of attraction between them.

4.1.3 W Alignment of Polar Molecules

The neutral atom discussed in Sect. 4.1.2 had no dipole moment to start with—p
was induced by the applied field. Some molecules have built-in, permanent dipole
moments. In the water molecule, for example, the electrons tend to cluster around
the oxygen atom (Fig. 4.4), and since the molecule is bent at 105°, this leaves a
negative charge at the vertex and a net positive charge on the opposite side. (The
dipole moment of water is unusually large: 6.1 x 10730 C-m; in fact, this is what
accounts for its effectiveness as a solvent.) What happens when such molecules
(called polar molecules) are placed in an electric field?

If the field is uniform, the force on the positive end, F, = gE, exactly cancels
the force on the negative end, F_ = —gE (Fig. 4.5). However, there will be a
torque:

N=@, xF,)+@_xF))
=[(d/2) x (@E)] + [(-d/2) x (—gE)] = qd x E.

+q —Pp
T P F+
+
H+« Hﬁ o d
O 105°MS
\(\///
i
(@ F —q
E
FIGURE 4.4 FIGURE 4.5

IFor a more sophisticated approach, see W. A. Bowers, Am. J. Phys. 54, 347 (1986).
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Thus a dipole p = ¢d in a uniform field E experiences a torque

N=pxE. (4.4)

Notice that N is in such a direction as to line p up parallel to E; a polar molecule
that is free to rotate will swing around until it points in the direction of the applied
field.

If the field is nonuniform, so that F does not exactly balance F_, there will be
anet force on the dipole, in addition to the torque. Of course, E must change rather
abruptly for there to be significant variation in the space of one molecule, so this
is not ordinarily a major consideration in discussing the behavior of dielectrics.
Nevertheless, the formula for the force on a dipole in a nonuniform field is of
some interest:

F=F,+F_ =qE; -E_)=q(AE),

where AE represents the difference between the field at the plus end and the field
at the minus end. Assuming the dipole is very short, we may use Eq. 1.35 to
approximate the small change in E:

AE, = (VE,) - d,
with corresponding formulas for £, and E.. More compactly,
AE = (d- V)E,

and therefore?

F=(p-V)E. (4.5)

For a “perfect” dipole of infinitesimal length, Eq. 4.4 gives the torque about
the center of the dipole even in a nonuniform field; about any other point N =
P xE)+ (r xF).

Problem 4.5 In Fig. 4.6, p; and p, are (perfect) dipoles a distance r apart. What is
the torque on p; due to p,? What is the torque on p, due to p;? [In each case, [ want
the torque on the dipole about its own center. If it bothers you that the answers are
not equal and opposite, see Prob. 4.29.]

FIGURE 4.6 FIGURE 4.7

2In the present context, Eq. 4.5 could be written more conveniently as F = V(p - E). However, it is
safer to stick with (p - V)E, because we will be applying the formula to materials in which the dipole
moment (per unit volume) is itself a function of position and this second expression would imply
(incorrectly) that p foo is to be differentiated.
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Problem 4.6 A (perfect) dipole p is situated a distance z above an infinite grounded
conducting plane (Fig. 4.7). The dipole makes an angle 8 with the perpendicular to
the plane. Find the torque on p. If the dipole is free to rotate, in what orientation
will it come to rest?

Problem 4.7 Show that the energy of an ideal dipole p in an electric field E is
given by

U=-p-E. (4.6)

Problem 4.8 Show that the interaction energy of two dipoles separated by a dis-
placement r is
1 1 X A
U=——=[pi-p>— 3@ -D(p2-D] .7
dmey r

[Hint: Use Prob. 4.7 and Eq. 3.104.]
Problem 4.9 A dipole p is a distance r from a point charge ¢, and oriented so that
p makes an angle 6 with the vector r from ¢ to p.

(a) What is the force on p?

(b) What is the force on ¢?

4.1.4 W Polarization

In the previous two sections, we have considered the effect of an external elec-
tric field on an individual atom or molecule. We are now in a position to answer
(qualitatively) the original question: What happens to a piece of dielectric material
when it is placed in an electric field? If the substance consists of neutral atoms (or
nonpolar molecules), the field will induce in each a tiny dipole moment, pointing
in the same direction as the field.? If the material is made up of polar molecules,
each permanent dipole will experience a torque, tending to line it up along the
field direction. (Random thermal motions compete with this process, so the align-
ment is never complete, especially at higher temperatures, and disappears almost
at once when the field is removed.)

Notice that these two mechanisms produce the same basic result: a lot of little
dipoles pointing along the direction of the field—the material becomes polarized.
A convenient measure of this effect is

P = dipole moment per unit volume,

which is called the polarization. From now on we shall not worry much about
how the polarization gor there. Actually, the two mechanisms I described are
not as clear-cut as I tried to pretend. Even in polar molecules there will be

3In asymmetric molecules, the induced dipole moment may not be parallel to the field, but if the
molecules are randomly oriented, the perpendicular contributions will average to zero. Within a single
crystal, the orientations are certainly not random, and we would have to treat this case separately.
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some polarization by displacement (though generally it is a lot easier to rotate a
molecule than to stretch it, so the second mechanism dominates). It’s even possi-
ble in some materials to “freeze in” polarization, so that it persists after the field
is removed. But let’s forget for a moment about the cause of the polarization, and
let’s study the field that a chunk of polarized material itself produces. Then, in
Sect. 4.3, we’ll put it all together: the original field, which was responsible for P,
plus the new field, which is due to P.

4.2 B THE FIELD OF A POLARIZED OBJECT

4.2.1 @ Bound Charges

Suppose we have a piece of polarized material—that is, an object containing a
lot of microscopic dipoles lined up. The dipole moment per unit volume P is
given. Question: What is the field produced by this object (not the field that may
have caused the polarization, but the field the polarization itself causes)? Well,
we know what the field of an individual dipole looks like, so why not chop the
material up into infinitesimal dipoles and integrate to get the total? As usual, it’s
easier to work with the potential. For a single dipole p (Eq. 3.99),

A

1 p-~2

V() = —_—,
® 4rey 22

4.8)

where % is the vector from the dipole to the point at which we are evaluating the
potential (Fig. 4.8). In the present context, we have a dipole moment p = Pdzt’ in
each volume element dt’, so the total potential is

Vi) = / P-4 4.9)

4 e 22
%

That does it, in principle. But a little sleight-of-hand casts this integral into a
much more illuminating form. Observing that

v 1\ %
) a2

FIGURE 4.8
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where (unlike Prob. 1.13) the differentiation is with respect to the source coordi-

nates (r'), we have
1 / 1 !/
V= P-V'|-)dr.
drey 2
%

Integrating by parts, using product rule number 5 (in the front cover), gives

1 / P / 1 I /
V= vViet—J)dt — | (V' -P)dt |,
dreg 2 2
% %

or, invoking the divergence theorem,

1 1 1 1

V= ?g—P' da’ — /—(V/'P)dl'/. (4.10)
dmey J 2 ey )] 2

S %

The first term looks like the potential of a surface charge

o, =P-h .11

(where 1 is the normal unit vector), while the second term looks like the potential
of a volume charge

op=—V -P. 4.12)

With these definitions, Eq. 4.10 becomes

]
% da’ + /@dr’. (4.13)

\% =
® dey 2 4 ey 2
S

What this means is that the potential (and hence also the field) of a polarized
object is the same as that produced by a volume charge density p, = —V - P plus
a surface charge density o, = P - n. Instead of integrating the contributions of all
the infinitesimal dipoles, as in Eq. 4.9, we could first find those bound charges,
and then calculate the fields they produce, in the same way we calculate the field
of any other volume and surface charges (for example, using Gauss’s law).

Example 4.2. Find the electric field produced by a uniformly polarized sphere
of radius R.

Solution
We may as well choose the z axis to coincide with the direction of polarization
(Fig. 4.9). The volume bound charge density p;, is zero, since P is uniform, but

o, =P-n= Pcosb,
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FIGURE 4.9

where 6 is the usual spherical coordinate. What we want, then, is the field pro-
duced by a charge density P cos 6 plastered over the surface of a sphere. But we
already computed the potential of such a configuration, in Ex. 3.9:

P
—rcosf, for r <R,
€0
V(r,0) =
3
— —cos 0, for r > R.
360 r2

Since r cos 6 = z, the field inside the sphere is uniform:

P . 1
E=-VV=——12=——P, for r<R. 4.14)
360 360

This remarkable result will be very useful in what follows. Outside the sphere the
potential is identical to that of a perfect dipole at the origin,

1 p-f
_47'[60 r? ’

W7

for r >R, (4.15)

FIGURE 4.10
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whose dipole moment is, not surprisingly, equal to the total dipole moment of the
sphere:

4 3
p=§7TR P. (4.16)

The field of the uniformly polarized sphere is shown in Fig. 4.10.

Problem 4.10 A sphere of radius R carries a polarization
P(r) = kr,

where k is a constant and r is the vector from the center.
(a) Calculate the bound charges o}, and py,.

(b) Find the field inside and outside the sphere.

Problem 4.11 A short cylinder, of radius a and length L, carries a “frozen-in” uni-
form polarization P, parallel to its axis. Find the bound charge, and sketch the elec-
tric field (i) for L > a, (ii) for L < a, and (iii) for L ~ a. [This is known as a bar
electret; it is the electrical analog to a bar magnet. In practice, only very special
materials—barium titanate is the most “familiar” example—will hold a permanent
electric polarization. That’s why you can’t buy electrets at the toy store.]

Problem 4.12 Calculate the potential of a uniformly polarized sphere (Ex. 4.2)
directly from Eq. 4.9.

4.2.2 W Physical Interpretation of Bound Charges

In the last section we found that the field of a polarized object is identical to
the field that would be produced by a certain distribution of “bound charges,” o
and p,. But this conclusion emerged in the course of abstract manipulations on
the integral in Eq. 4.9, and left us with no clue as to the physical meaning of these
bound charges. Indeed, some authors give you the impression that bound charges
are in some sense “fictitious”—mere bookkeeping devices used to facilitate the
calculation of fields. Nothing could be further from the truth: p, and o} repre-
sent perfectly genuine accumulations of charge. In this section I'll explain how
polarization leads to these charge distributions.

The basic idea is very simple: Suppose we have a long string of dipoles, as
shown in Fig. 4.11. Along the line, the head of one effectively cancels the tail of
its neighbor, but at the ends there are two charges left over: plus at the right end
and minus at the left. It is as if we had peeled off an electron at one end and carried
it all the way down to the other end, though in fact no single electron made the
whole trip—a lot of tiny displacements add up to one large one. We call the net
charge at the ends a bound charge to remind ourselves that it cannot be removed;

"0 >00>00>00>00 >0 =
— 4= 4= 4= - -+ -

+e

FIGURE 4.11



4.2 The Field of a Polarized Object 177
d

T
[
A |

0
Y NG
= eo—e
e B \Acnd
FIGURE 4.12 FIGURE 4.13

in a dielectric every electron is attached to a specific atom or molecule. But apart
from that, bound charge is no different from any other kind.

To calculate the actual amount of bound charge resulting from a given polar-
ization, examine a “tube” of dielectric parallel to P. The dipole moment of the
tiny chunk shown in Fig. 4.12 is P(Ad), where A is the cross-sectional area of
the tube and d is the length of the chunk. In terms of the charge (¢) at the end,
this same dipole moment can be written gd. The bound charge that piles up at the
right end of the tube is therefore

qg = PA.
If the ends have been sliced off perpendicularly, the surface charge density is
q
op = Z = P.
For an oblique cut (Fig. 4.13), the charge is still the same, but A = A¢pq cos 6, so
op = 7 _ Pcosf =P -n.
end

The effect of the polarization, then, is to paint a bound charge o, = P - i over the
surface of the material. This is exactly what we found by more rigorous means in
Sect. 4.2.1. But now we know where the bound charge comes from.

If the polarization is nonuniform, we get accumulations of bound charge within
the material, as well as on the surface. A glance at Fig. 4.14 suggests that a diverg-
ing P results in a pileup of negative charge. Indeed, the net bound charge [ p, dt

FIGURE 4.14
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in a given volume is equal and opposite to the amount that has been pushed out
through the surface. The latter (by the same reasoning we used before) is P - fi per

unit area, so
/,Obdtz—%P'daz—/(V~P)dT.
%

\% S

Since this is true for any volume, we have
pp=—V-P,

confirming, again, the more rigorous conclusion of Sect. 4.2.1.

Example 4.3. There is another way of analyzing the uniformly polarized sphere
(Ex. 4.2), which nicely illustrates the idea of a bound charge. What we have,
really, is two spheres of charge: a positive sphere and a negative sphere. With-
out polarization the two are superimposed and cancel completely. But when the
material is uniformly polarized, all the plus charges move slightly upward (the
z direction), and all the minus charges move slightly downward (Fig. 4.15). The
two spheres no longer overlap perfectly: at the top there’s a “cap” of leftover pos-
itive charge and at the bottom a cap of negative charge. This “leftover” charge is
precisely the bound surface charge o,.

FIGURE 4.15

In Prob. 2.18, you calculated the field in the region of overlap between two
uniformly charged spheres; the answer was

1 gd
4meg R3’

where ¢ is the total charge of the positive sphere, d is the vector from the negative
center to the positive center, and R is the radius of the sphere. We can express this
in terms of the polarization of the sphere, p = gd = (%n R3)P, as

1
E=—-——P.
360
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Meanwhile, for points outside, it is as though all the charge on each sphere were
concentrated at the respective center. We have, then, a dipole, with potential

1 p-r

(Remember that d is some small fraction of an atomic radius; Fig. 4.15 is grossly
exaggerated.) These answers agree, of course, with the results of Ex. 4.2.

Problem 4.13 A very long cylinder, of radius a, carries a uniform polarization P
perpendicular to its axis. Find the electric field inside the cylinder. Show that the
field outside the cylinder can be expressed in the form

2

E(r) = [2(P-§)8 — P).

260&2
[Careful: 1 said “uniform,” not “radial”!]

Problem 4.14 When you polarize a neutral dielectric, the charge moves a bit, but
the total remains zero. This fact should be reflected in the bound charges o, and p.
Prove from Eqs. 4.11 and 4.12 that the total bound charge vanishes.

4.2.3 H The Field Inside a Dielectric*

I have been sloppy about the distinction between “pure” dipoles and “physical”
dipoles. In developing the theory of bound charges, I assumed we were working
with the pure kind—indeed, I started with Eq. 4.8, the formula for the potential
of a perfect dipole. And yet, an actual polarized dielectric consists of physical
dipoles, albeit extremely tiny ones. What is more, I presumed to represent dis-
crete molecular dipoles by a continuous density function P. How can I justify
this method? Outside the dielectric there is no real problem: here we are far away
from the molecules (2 is many times greater than the separation distance between
plus and minus charges), so the dipole potential dominates overwhelmingly and
the detailed “graininess” of the source is blurred by distance. Inside the dielectric,
however, we can hardly pretend to be far from all the dipoles, and the procedure I
used in Sect. 4.2.1 is open to serious challenge.

In fact, when you stop to think about it, the electric field inside matter must
be fantastically complicated, on the microscopic level. If you happen to be very
near an electron, the field is gigantic, whereas a short distance away it may be
small or may point in a totally different direction. Moreover, an instant later, as
the atoms move about, the field will have altered entirely. This true microscopic
field would be utterly impossible to calculate, nor would it be of much interest
if you could. Just as, for macroscopic purposes, we regard water as a continu-
ous fluid, ignoring its molecular structure, so also we can ignore the microscopic

4This section can be skipped without loss of continuity.
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bumps and wrinkles in the electric field inside matter, and concentrate on the
macroscopic field. This is defined as the average field over regions large enough
to contain many thousands of atoms (so that the uninteresting microscopic fluc-
tuations are smoothed over), and yet small enough to ensure that we do not wash
out any significant large-scale variations in the field. (In practice, this means we
must average over regions much smaller than the dimensions of the object itself.)
Ordinarily, the macroscopic field is what people mean when they speak of “the”
field inside matter.’

It remains to show that the macroscopic field is what we actually obtain when
we use the methods of Sect. 4.2.1. The argument is subtle, so hang on. Sup-
pose I want to calculate the macroscopic field at some point r within a dielectric
(Fig. 4.16). I know I must average the true (microscopic) field over an appropriate
volume, so let me draw a small sphere about r, of radius, say, a thousand times
the size of a molecule. The macroscopic field at r, then, consists of two parts: the
average field over the sphere due to all charges outside, plus the average due to all
charges inside:

E = Eoul + Ein~

You proved in Prob. 3.47(d) that the average field (over a sphere), produced by
charges outside, is equal to the field they produce at the center, so E is the field
at r due to the dipoles exterior to the sphere. These are far enough away that we
can safely use Eq. 4.9:

1 P(r) -4
Vi = / )2 4.17)
4 e 22

outside
The dipoles inside the sphere are too close to treat in this fashion. But fortunately
all we need is their average field, and that, according to Eq. 3.105, is
1 p
4meg R3’
regardless of the details of the charge distribution within the sphere. The only
relevant quantity is the total dipole moment, p = (‘3—‘71 R P:

1
Ej, =——P. (4.18)
360

Ve

FIGURE 4.16

Ein =

3In case the notion of macroscopic fields sounds suspicious to you, let me point out that you do exactly
the same averaging whenever you speak of the density of a material.
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Now, by assumption, the sphere is small enough that P does not vary signif-
icantly over its volume, so the term left out of the integral in Eq. 4.17 corre-
sponds to the field at the center of a uniformly polarized sphere, to wit: —(1/3€o)P
(Eq. 4.14). But this is precisely what E;;, (Eq. 4.18) puts back in! The macroscopic
field, then, is given by the potential

1 Pr) -4
V() = f dr’, (4.19)

4 e 22

where the integral runs over the entire volume of the dielectric. This is, of course,
what we used in Sect. 4.2.1; without realizing it, we were correctly calculating
the averaged, macroscopic field, for points inside the dielectric.

You may have to reread the last couple of paragraphs for the argument to sink
in. Notice that it all revolves around the curious fact that the average field over
any sphere (due to the charge inside) is the same as the field at the center of a
uniformly polarized sphere with the same total dipole moment. This means that no
matter how crazy the actual microscopic charge configuration, we can replace it
by a nice smooth distribution of perfect dipoles, if all we want is the macroscopic
(average) field. Incidentally, while the argument ostensibly relies on the spherical
shape I chose to average over, the macroscopic field is certainly independent of
the geometry of the averaging region, and this is reflected in the final answer,
Eq. 4.19. Presumably one could reproduce the same argument for a cube or an
ellipsoid or whatever—the calculation might be more difficult, but the conclusion
would be the same.

4.3 B THE ELECTRIC DISPLACEMENT

4.3.1 ® Gauss’s Law in the Presence of Dielectrics

In Sect. 4.2 we found that the effect of polarization is to produce accumulations of
(bound) charge, p, = —V - P within the dielectric and o, = P - i on the surface.
The field due to polarization of the medium is just the field of this bound charge.
We are now ready to put it all together: the field attributable to bound charge plus
the field due to everything else (which, for want of a better term, we call free
charge, p). The free charge might consist of electrons on a conductor or ions
embedded in the dielectric material or whatever; any charge, in other words, that
is not a result of polarization. Within the dielectric, the total charge density can
be written:

o= pp+p5, (4.20)
and Gauss’s law reads
eV-E=p=p,+pr ==V -P+py,

where E is now the fotal field, not just that portion generated by polarization.
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It is convenient to combine the two divergence terms:
V. (eE+P) = P

The expression in parentheses, designated by the letter D,

D = ¢FE +P, 4.21)

is known as the electric displacement. In terms of D, Gauss’s law reads

V.D=p,. 4.22)

or, in integral form,

$v.da=o. (4.23)

where Q. denotes the total free charge enclosed in the volume. This is a par-
ticularly useful way to express Gauss’s law, in the context of dielectrics, because
it makes reference only to free charges, and free charge is the stuff we control.
Bound charge comes along for the ride: when we put the free charge in place,
a certain polarization automatically ensues, by the mechanisms of Sect. 4.1, and
this polarization produces the bound charge. In a typical problem, therefore, we
know p/, but we do not (initially) know p;; Eq. 4.23 lets us go right to work with
the information at hand. In particular, whenever the requisite symmetry is present,
we can immediately calculate D by the standard Gauss’s law methods.

Example 4.4. A long straight wire, carrying uniform line charge A, is surrounded
by rubber insulation out to a radius a (Fig. 4.17). Find the electric displacement.

Gaussian surface

FIGURE 4.17

Solution
Drawing a cylindrical Gaussian surface, of radius s and length L, and applying
Eq. 4.23, we find

DQ2nsL) = AL.
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Therefore,

AL
D=4 (4.24)

Notice that this formula holds both within the insulation and outside it. In the
latter region, P = 0, so

1 A
E=—D=

S, fors > a.
€0 2meps

Inside the rubber, the electric field cannot be determined, since we do not know P.

It may appear to you that I left out the surface bound charge o}, in deriving
Eq. 4.22, and in a sense that is true. We cannot apply Gauss’s law precisely at the
surface of a dielectric, for here p;, blows up,° taking the divergence of E with it.
But everywhere else the logic is sound, and in fact if we picture the edge of the
dielectric as having some finite thickness, within which the polarization tapers
off to zero (probably a more realistic model than an abrupt cut-off anyway), then
there is no surface bound charge; p, varies rapidly but smoothly within this “skin,”
and Gauss’s law can be safely applied everywhere. At any rate, the integral form
(Eq. 4.23) is free from this “defect.”

Problem 4.15 A thick spherical shell (inner radius a, outer radius b) is made of
dielectric material with a “frozen-in” polarization

k
P(r) = -,
r

where k is a constant and r is the distance from the center (Fig. 4.18). (There is
no free charge in the problem.) Find the electric field in all three regions by two
different methods:

fp,

e P
23

- =
(a) Sphere (b) Needle (c) Wafer

P
A

’p

FIGURE 4.18 FIGURE 4.19

The polarization drops abruptly to zero outside the material, so its derivative is a delta function (see
Prob. 1.46). The surface bound charge is precisely this term—in this sense it is actually included in
pp, but we ordinarily prefer to handle it separately as o,.
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(a) Locate all the bound charge, and use Gauss’s law (Eq. 2.13) to calculate the
field it produces.

(b) Use Eq. 4.23 to find D, and then get E from Eq. 4.21. [Notice that the second
method is much faster, and it avoids any explicit reference to the bound charges.]

Problem 4.16 Suppose the field inside a large piece of dielectric is Eo, so that the
electric displacement is Dy = €oE( + P.

(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. Find
the field at the center of the cavity in terms of E, and P. Also find the displace-
ment at the center of the cavity in terms of Dy and P. Assume the polarization
is “frozen in,” so it doesn’t change when the cavity is excavated.

(b) Do the same for a long needle-shaped cavity running parallel to P (Fig. 4.19b).
(c) Do the same for a thin wafer-shaped cavity perpendicular to P (Fig. 4.19c¢).

Assume the cavities are small enough that P, E, and D, are essentially uniform.
[Hint: Carving out a cavity is the same as superimposing an object of the same
shape but opposite polarization.]

4.3.2 W A Deceptive Parallel

Equation 4.22 looks just like Gauss’s law, only the fotal charge density p is
replaced by the free charge density ps, and D is substituted for E. For this
reason, you may be tempted to conclude that D is “just like” E (apart from the
factor €), except that its source is p instead of p: “To solve problems involving
dielectrics, you just forget all about the bound charge—calculate the field as you
ordinarily would, only call the answer D instead of E.” This reasoning is seduc-
tive, but the conclusion is false; in particular, there is no “Coulomb’s law” for D:

A

1 2 , ,
D(r) # Ef;zpf(r)dr.

The parallel between E and D is more subtle than that.

For the divergence alone is insufficient to determine a vector field; you need to
know the curl as well. One tends to forget this in the case of electrostatic fields
because the curl of E is always zero. But the curl of D is not always zero.

VxD=¢(VXE)+(VxP)=V xP, (4.25)

and there is no reason, in general, to suppose that the curl of P vanishes. Some-
times it does, as in Ex. 4.4 and Prob. 4.15, but more often it does not. The
bar electret of Prob. 4.11 is a case in point: here there is no free charge any-
where, so if you really believe that the only source of D is py, you will be
forced to conclude that D = 0 everywhere, and hence that E = (—1/¢()P inside
and E = 0 outside the electret, which is obviously wrong. (I leave it for you to
find the place where V x P # 0 in this problem.) Because V x D # 0, more-
over, D cannot be expressed as the gradient of a scalar—there is no “potential”
for D.
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Advice: When you are asked to compute the electric displacement, first look for
symmetry. If the problem exhibits spherical, cylindrical, or plane symmetry, then
you can get D directly from Eq. 4.23 by the usual Gauss’s law methods. (Evidently
in such cases V x P is automatically zero, but since symmetry alone dictates the
answer, you’re not really obliged to worry about the curl.) If the requisite sym-
metry is absent, you’ll have to think of another approach, and, in particular, you
must not assume that D is determined exclusively by the free charge.

4.3.3 H Boundary Conditions

The electrostatic boundary conditions of Sect. 2.3.5 can be recast in terms of D.
Equation 4.23 tells us the discontinuity in the component perpendicular to an
interface:

DL D&

above below

= oy, (4.26)
while Eq. 4.25 gives the discontinuity in parallel components:

I _pl I
- Dbelow - Pabove - Pbelow'

D!

above

4.27)

In the presence of dielectrics, these are sometimes more useful than the corre-
sponding boundary conditions on E (Egs. 2.31 and 2.32):

1
E'j[)ove - Elielow = —0, (4.28)
€0
and
Eé‘l‘bOVE - EtH)elow =0. (4.29)

You might try applying them, for example, to Probs. 4.16 and 4.17.

Problem 4.17 For the bar electret of Prob. 4.11, make three careful sketches: one
of P, one of E, and one of D. Assume L is about 2a. [Hint: E lines terminate on
charges; D lines terminate on free charges.]

4.4 B LINEAR DIELECTRICS

4.4.1 W Susceptibility, Permittivity, Dielectric Constant

In Sects. 4.2 and 4.3 we did not commit ourselves as to the cause of P; we dealt
only with the effects of polarization. From the qualitative discussion of Sect. 4.1,
though, we know that the polarization of a dielectric ordinarily results from an
electric field, which lines up the atomic or molecular dipoles. For many sub-
stances, in fact, the polarization is proportional to the field, provided E is not
too strong:

P = cox.E. (4.30)



